Плазменное напыление

Плазменное напыление основано на использовании энергии плазменной струи как для нагрева, так и для переноса частиц металла. Плазменную струю получают путем продувания плазмообразующего газа сквозь электрическую дугу и обжатия стенками медного водоохлаждаемого сопла.
Плазменные покрытия обладают такими свойствами: жаростойкостью, жаро- и эрозионной прочностью, тепло- и электроизоляцией, противосхватываемостью, коррозионной стойкостью, защитой от кавитации, полупроводниковыми, магнитными и др.

Области применения плазменных покрытий: ракетная, авиационная и космическая техника, машиностроение, энергетика (в том числе атомная), металлургия, химия, нефтяная и угольная промышленность, транспорт, электроника, радио- и приборостроение, материаловедение, строительство, ремонт машин и восстановление деталей.

Если себестоимость газопламенного напыления проволочными материалами принять за единицу, то себестоимость плазменного и газопламенного напыления порошков будут соответственно 1,9 и 1,6, а электродугового — 0,85.

плазменная горелка для напыления порошкового материала

Плазменную струю получают в плазменной горелке, основные части которой (рис. 3.34) — электрод-катод /, водоохлаждаемое медное сопло-анод 4, стальной корпус 2, устройства для подвода воды 3, порошка 5 и газа 6. Части корпуса, взаимодействующие с катодом или анодом, изолированы друг от друга.
Порошкообразный материал подают питателем с помощью транспортирующего газа. Возможен ввод порошка с плазмообразующим газом.
Напыляемый материал (порошок, проволока, шнур или их комбинация) вводят в сопло плазменной горелки ниже анодного пятна, в столб плазменной дуги или плазменную струю.

Высокие температура и скорость струи делают возможным напыление покрытий из любых материалов, не диссоциирующих при нагреве, без ограничений на температуру плавления. Плазменным напылением получают покрытия из металлов и сплавов, оксидов, карбидов, боридов, нитридов и композиционных материалов.

Необходимые физико-механические свойства покрытий объясняются высокими температурой плазмы и скоростью ее истечения, применением инертных плазмообразующих газов, возможностью регулирования аэродинамических условий формирования металлоплазменной струи.
В материале детали не происходит структурных преобразований, возможно нанесение тугоплавких материалов и многослойных покрытий из различных материалов в сочетании плотных и твердых нижних слоев с пористыми и мягкими верхними (для улучшения прирабатываемости покрытий), износостойкость покрытий высокая, достижима полная автоматизация процесса.

физико-химические характеристики плазмообразующих газов

При легировании через проволоку наплавку ведут высокоуглеродистой или легированной проволокой под плавленым флюсом. При этом обеспечиваются высокая точность легирования и стабильность химического состава наплавленного металла по глубине покрытия.

Легирование наплавленного металла через флюс выполняют наплавкой малоуглеродистой проволокой под слоем керамического флюса. Высокая твердость покрытий исключает их последующую термическую обработку. Однако этот способ легирования не нашел широкого применения из-за большой неравномерности наплавленного металла по химическому составу и необходимости строго выдерживать режим наплавки.

Комбинированный способ легирования одновременно через проволоку и флюс получил наибольшее распространение.

В качестве источников питания применяют выпрямители ВС-300, ВДУ-504, ВС-600, ВДГ-301 и преобразователи ПСГ-500 с пологопадаю-щей или жесткой внешней характеристикой. В роли вращателей деталей используют специальные установки (УД-133, УД-140, УД-143, УД-144, УД-209, УД-233, УД-299, УД-302, УД-651, ОКС-11200, ОКС-11236, ОКС-11238, ОКС-14408, ОКС-27432, 011-1-00 РД) либо списанные токарные или фрезерные станки. Для подачи проволоки применяют головки А-580М, ОКС-1252М, А-765, А-1197.

Основные технологические параметры наплавки: состав электродного материала и флюса, напряжение дуги U, сила / и полярность тока, скорость наплавки vH и подачи vn электродного материала, шаг наплавки S, смещение электрода с зенита е, диаметр d3 и вылет электрода. Примерные режимы наплавки под слоем флюса цилиндрических деталей приведены в табл. 3.52.

Наплавка под слоем флюса имеет следующие разновидности.

Наплавка лежачий электродом (прутковым или пластинчатым) из низкоуглеродистой или легированной стали применяется для восстановления плоскостей. Часть флюса насыпают на восстанавливаемую поверхность (толщиной 3…5 мм), а часть — на электрод (толщина слоя флюса достигает 10… 15 мм). Применяют флюсы-смеси. В одном месте электрод замыкают с деталью для возбуждения дуги, которая при горении блуждает в поперечном направлении. Плотность тока составляет 6…9 А/мм напряжение 35…45 В. Для выполнения процесса имеется установка ОКС-11240 ГосНИТИ.

Повышение производительности и более высокое содержание легирующих элементов в покрытии обеспечиваются многоэлектродной наплавкой под флюсом на детали со значительным износом на большой площади (рис. 3.23). Блуждающая дуга горит между деталью и ближайшим к ней электродом.

Натавка по слою порошка (толщиной 6…9 мм) под флюсом повышает производительность процесса и обеспечивает получение толстых покрытий нужного состава.
Область применения механизированной наплавки пол слоем флюса распространяется на восстановление деталей (диаметром более 50 мм) из углеродистых и низколегированных сталей, требующих нанесения слоя толщиной > 2 мм с высокими требованиями к его физико-механическим свойствам. Наплавляют шейки валов, поверхности катков и роликов, направляющие станин и другие элементы.

Механизированная наплавка под слоем флюса обладает такими преимуществами:

— повышением производительности труда в 6…8 раз по сравнению с ручной электродуговой наплавкой с одновременным снижением расхода электроэнергии в 2 раза за счет более высокого термического КПД;

— высоким качеством наплавленного металла благодаря насыщению необходимыми легирующими элементами и рациональной организации тепловых процессов;

— возможностью получения покрытий толщиной > 2 мм/p.

В качестве плазмообразующих газов при напылении материалов используют аргон, гелий, азот, водород и их смеси (табл. 3.68). Плазмообразующие газы не содержат кислорода, поэтому не окисляют материал и напыляемую поверхность.

Гелий и водород в чистом виде практически не применяются по экономическим соображениям, а также вследствие разрушающего действия на электрод.

Азот и аргон используются чаще, однако наилучшими показателями обладают газовые смеси, например Ar + N, и Аг + Н2. Вид плазмообразующего газа выбирают исходя из требуемых температуры, теплосодержания и скорости потока, его степени инертности к распыляемому материалу и восстанавливаемой поверхности. Следует учитывать, что плазма двух- и многоатомарных газов по сравнению с одноатомарными содержит больше тепла при одинаковой температуре, потому что ее энтальпия определяется тепловым движением атомов, ионизацией и энергией диссоциации.

При напылении порошковых или шнуровых материалов электрическое напряжение прилагают к электродам плазменной горелки. При напылении проволочных материалов напряжение подводят к электродам горелки, дополнительно оно может быть приложено к напыляемому материалу, т.е. проволока может быть токоведушей или нет. Напыляемую деталь в цепь нагрузки не включают.

Порошки для плазменного напыления не должны создавать заторы в транспортных трубопроводах, а должны равномерно подаваться в плазменную струю и свободно перемещаться с газовым потоком. Этим требованиям удовлетворяют частицы порошка сферической формы диаметром 20… 100 мкм.

В Институте электросварки им. Е.О. Патона НАН Украины разработаны порошковые проволоки сер. АМОТЕК. состоящие из стальной оболочки и порошкового наполнителя. Эти материалы предназначены для нанесения износо- и коррозионностойких покрытий способами газопламенного, электродугового и плазменного напыления. Особенностью материалов является возможность аморфизации структуры напыляемых покрытий. Наличие аморфной составляющей в структуре покрытий обеспечивает комплекс повышенных служебных свойств (износо- и коррозие-стойкости, прочности соединения с основой).

Для защиты частиц напыляемого материала от окисления, обезуглероживания и азотирования применяют газовые линзы (кольцевой потокинертного газа), являющиеся как бы оболочкой плазменной струи, и специальные камеры с инертной средой, в которых происходит процесс напыления.

Приведем примеры применения плазменного напыления в процессах восстановления деталей.

Освоено несколько разновидностей процесса восстановления коренных опор блоков цилиндров. Первые исследователи способа рекомендовали в качестве наносимого материала малоуглеродистую стальную проволоку Св-08 для обеспечения однородной мелкодисперсной структуры покрытия и повышения прочности соединения его с основой. Позднее были рекомендованы порошкообразные материалы. Распространение получили композиционные порошки и порошки из бронзы. Порошки из бронзы наносят на поверхности как чугунных деталей, так и деталей из алюминиевого сплава. Предварительно должен быть нанесен термореагирующий подслой Al-Ni.

При восстановлении коренных опор в чугунных блоках цилиндров применяют более дешевый порошок грануляцией 160…200 мкм состава: Fe (основа). 5 % Си и 1 % AI. Режим нанесения покрытия: ток плазменной дуги 330 А, напряжение 70 В, расход плазмообразующего газа (азота) 25 л/мин, диаметр сопла плазмотрона 5,5 мм, частота качаний плазмотрона 83 мин’, подача детали 320 мм/мин, расход порошка 7 кг/ч.

Процесс нанесения плазменного покрытия на поверхности отверстий в деталях из алюминиевого сплава включает:

1) сушку порошков при температуре 150..20 °С в течение 3 ч;

2) предварительное растачивание отверстий до размера, превышающего на 1 мм номинальный размер отверстия;

3) установку защитных экранов;

4) обезжиривание напыляемых поверхностей ацетоном;

5) нанесение покрытия в две операции;

6) снятие защитных экранов;

7) предварительное и окончательное растачивание;

8) удаление облоя.

В первой операции наносят подслой ПН-85Ю15, во второй — основной слой из медного порошка ПМС-Н. Режимы нанесения покрытий: сила тока 220…280 А, расход азота 20…25 л/мин при давлении 0,35 МПа. расстояние от сопла до детали 100… 120 мм, время нанесения покрытия 15 мин. Покрытие наносят на стенде. Плазмообразующее оборудование состоит из источника питания ИПН 160/600 н установки УПУ-ЗД или УПУ-8.

Применяют плазменное напыление при нанесении покрытий на плоскости головок цилиндров из силумина. Технология включает предварительное фрезерование изношенной поверхности, нанесение покрытия и последующую обработку. В качестве материала покрытия используют порошок из алюминия и 40…48 % Fe. Режим нанесения покрытия: сила тока 280 А, расстояние от сопла до детали 90 мм. расход плазмообразующего газа (азота) 72 л/мин.

С целью удешевления процесса и повышения его производительности внедрен процесс электродугового напыления плоскостей из проволоки Св-АК5 диаметром 2 мм. Применяют источник тока ВГД-301 и металлизатор ЭМ-12. Режимы напыления: сила тока 300 А, напряжение 28… 32 В, давление распыливающего воздуха 0.4…0.6 МПа, расстояние от сопла до детали 80… 100 мм. Покрытие толщиной 5 мм наносят за 8… 10 мин.

При восстановлении поршней из алюминиевого сплава наносят плазменное покрытие из порошка бронзы ПР-Бр. АЖНМц 8,5-4-5-1,5 (8,5 % AI, 4 % Fe, 4.8 % Ni. 1,4 % Мп, остальное Си). Игпользуют установку УПУ-8. Режим нанесения: ток 380 А, расстояние от сопла до детали 120 мм. плазмообразуюший газ — смесь аргона с азотом.

При восстановлении коленчатых валов из высокопрочного чугуна наносят плазменное покрытие из композиции порошков на термореагирующий подстой из материала ПН-85Ю15. Состав композиции: 50 % ПГСР, 30 % ПЖ4 и 20 % ПН85Ю15.

Режимы процесса: I = 400 А, расстояние от сопла до детали 150 мм. расход азота 25 л/мин. Согласно авторскому свидетельству на изобретение СССР № 1737017. цель которого — повышение адгезионной и когезионной прочности покрытий, наносимый материал содержит (в мае. %): самофлюсующийся сплав системы Ni—Сг—В—Si 25…50, порошок железа 30…50 и никель-алюминиевый порошок 20…25.

Микроплазменное напыление применяют при восстановлении участков деталей с размерами 5… 10 мм с целью уменьшения потерь напыляемого материала. Используют плазмотроны малой мощности (до 2… 2,5 кВт), генерирующие квазиламинарную плазменную струю при силе тока 10…60 А. В качестве плазмообразующего и защитного газа применяют аргон. При микроплазменном напылении удается уменьшить диаметр металлоплазменной струи до 1…5 мм. Процесс характерен низким уровнем шума (30…50 дБ) и небольшим количеством отработавших газов, что позволяет вести напыление в помещении без применения рабочей камеры. Создана установка микроплазменного напыления МПН-001.

Технологические режимы плазменного напыления определяются: видом и дисперсностью материала, током плазменной струи и его напряжением, видом и расходом плазмообразующего газа, диаметром сопла плазменной горелки и расстоянием от сопла до напыляемой поверхности.

Дисперсность частиц материала, ток плазменной струи и расход плазмообразующего газа определяют температуру нагрева частиц и их скорость перемещения, а значит, — плотность и структуру покрытия.

Большая равномерность свойств покрытия обеспечивается при более высокой скорости перемещения плазмотрона относительно детали и меньшей толщине слоя. Эта скорость мало влияет на коэффициент использования материала и значительно сказывается на производительности процесса.

Расстояние от сопла до восстанавливаемой поверхности зависит от вида плазмообразующего газа, свойств напыляемого материала и изменяется в пределах 120…250 мм (чаще 120…150 мм). Угол между осью потока частиц и восстанавливаемой поверхностью должен приближаться к 90°.

Оптимальное сочетание теплосодержания потока плазмы, времени пребывания частиц в этом потоке и их скорости обеспечивает получение покрытий с высокими физико-механическими свойствами.

Свойства плазменных покрытий существенно улучшаются при их оплавлении. При этом плавится наиболее легкоплавкая часть материала, однако температура нагрева должна быть достаточной для плавления боросиликатов, которые восстанавливают металлы из оксидов и образуют шлаки.

Оплавляемые материалы должны удовлетворять таким требованиям: температура плавления легкоплавкой составляющей сплава не должна превышать 1000… 1100 °С. сплав в разогретом состоянии должен хорошо смачивать поверхность заготовки и обладать свойством самофлюсования. Такими свойствами обладают порошковые материалы на основе никеля, имеющие температуру плавления 980… 1050 °С и содержащие флюсующие элементы: бор и кремний. Недостаточная температура нагрева покрытия приводит к образованию на поверхности капель металла. Жидкое состояние части покрытия способствует интенсивному протеканию диффузионных процессов, при этом материал детали остается в твердом состоянии.

В результате оплавления значительно повышается прочность соединения покрытия с основой, увеличивается когезионная прочность, исчезает пористость и улучшается износостойкость.

Оплавленные покрытия имеют обрабатываемость, близкую к обрабатываемости монолитных жаропрочных сталей и сплавов аналогичного химического состава.
Покрытия оплавляют: газовой горелкой (ацетиленокислородным пламенем), в термической печи, индуктором (токами высокой частоты), электронным или лазерным лучом, плазменной горелкой (плазменной струей), пропусканием тока большой величины.

Оплавление газовой горелкой — наиболее простой способ, позволяющий визуально контролировать качество оплавления. Недостатки способа — односторонний нагрев детали, который может привести к ее короблению, и большая трудоемкость при обработке массивных деталей.

Печное оплавление обеспечивает прогрев всего объема детали, поэтому вероятность появления трещин уменьшается. Однако сопряженные с покрытием участки детали покрываются окалиной, их физико-механические свойства ухудшаются. Негативное влияние окислительной атмосферы на свойства покрытий при их нагреве исключается при наличии защитной среды.

Хорошие результаты дает индукционное оплавление, которое обеспечивает большую производительность без нарушения термообработки всей заготовки. Нагреву подвергают только покрытие и примыкающий к нему тонкий слой основного металла. Толщина прогреваемого металла зависит от частоты тока: с увеличением последней толщина уменьшается. Высокие скорости нагрева и охлаждения могут привести к трещинам в покрытии.

Оплавление покрытий электронным или лазерным лучом практически не изменяет свойств сопряженных с покрытием участков и сердцевину детали. Вследствие высокой стоимости эти способы следует применять при восстановлении ответственных дорогостоящих деталей, покрытия на которых трудно оплавить другими способами.

Оплавленные покрытия из сплавов на основе никеля ПГ-СР2. ПГ-СРЗ и ПГ-СР4 имеют такие свойства:

— твердость 35…60 HRC в зависимости от содержания в них бора;

— повышенную в 2…3 раза износостойкость по сравнению с закаленной сталью 45, что объясняется присутствием в структуре покрытия твердых кристаллов (боридов и карбидов);

— увеличенную в 8… 10 раз прочность соединения покрытия с основой по сравнению с прочностью соединения неоплавленных покрытий;

— повышенную на 20…25 % усталостную прочность.

Область применения плазменных покрытий с последующим оплавлением — это восстановление поверхностей деталей, работающих в условиях знакопеременных и контактных нагрузок.

Оплавленные покрытия имеют многофазную структуру, составляющие которой — бориды, избыточные карбиды и эвтектика. Вид микроструктуры (дисперсность, вид и количество составляющих) зависит от химического состава самофлюсующегося сплава, времени и температуры нагрева.

Наилучшую износостойкость деталям в нагруженных сопряжениях обеспечивают покрытия из самофлюсующихся сплавов. Структура покрытия — высоколегированный твердый раствор с включениями дисперсных металлоподобных фаз (прежде всего боридных или карбидных) с размером частиц 1…10 мкм, равномерно распределенных в основе.

Для плазменного напыления металлических и неметаллических покрытий (тугоплавких, износостойких, коррозионностойких) применяют установки: УН-115, УН-120, УПМ-6. УПУ-ЗД. УПС-301. АПР-403. УПРП-201.